21 research outputs found

    NONLINEAR ADAPTIVE HEADING CONTROL FOR AN UNDERACTUATED SURFACE VESSEL WITH CONSTRAINED INPUT AND SIDESLIP ANGLE COMPENSATION

    Get PDF
    In this paper, a nonlinear adaptive heading controller is developed for an underactuated surface vessel with constrained input and sideslip angle compensation. The controller design is accomplished in a framework of backstepping technique. First, to amend the irrationality of the traditional definition of the desired heading, the desired heading is compensated by the sideslip angle. Considering the actuator physical constrain, a hyperbolic tangent function and a Nussbaum function are introduced to handle the nonlinear part of control input. The error and the disturbance are estimated and compensated by an adaptive control law. In addition, to avoid the complicated calculation of time derivatives of the virtual control, the command filter is introduced to integrate with the control law. It is analysed by the Lyapunov theory that the closed loop system is guaranteed to be uniformly ultimately bounded stability. Finally, the simulation studies illustrate the effectiveness of the proposed control method

    Biologically Inspired Intelligence with Applications on Robot Navigation

    Get PDF
    Biologically inspired intelligence technique, an important embranchment of series on computational intelligence, plays a crucial role for robotics. The autonomous robot and vehicle industry has had an immense impact on our economy and society and this trend will continue with biologically inspired neural network techniques. In this chapter, multiple robots cooperate to achieve a common coverage goal efficiently, which can improve the work capacity, share the coverage tasks, and reduce the completion time by a biologically inspired intelligence technique, is addressed. In many real-world applications, the coverage task has to be completed without any prior knowledge of the environment. In this chapter, a neural dynamics approach is proposed for complete area coverage by multiple robots. A bio-inspired neural network is designed to model the dynamic environment and to guide a team of robots for the coverage task. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting neural equation. Each mobile robot treats the other robots as moving obstacles. Each robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot position. The proposed model algorithm is computationally simple. The feasibility is validated by four simulation studies

    Developing and testing a remotely operated vehicle with a seven-function manipulator

    No full text
    This paper presents the development and testing of a remotely operated vehicle (ROV). The outstanding ability of this ROV lies in its underwater hovering positioning control. At the same time, it is equipped with a seven-function underwater electric operation manipulator and the master-slave control mode is adopted. These are obvious advantages over other medium-sized ROVs. The control hardware architecture and control software architecture of this ROV are also provided. Finally, the test results of the depth trajectory tracking control, heading trajectory tracking control and hover control in the lake environment are presented and analyzed

    A Local and Non-Local Features Based Feedback Network on Super-Resolution

    No full text
    Recent advances in Single Image Super-Resolution (SISR) achieved a powerful reconstruction performance. The CNN-based network (both sequential-based and feedback-based) performs well in local features, while the self-attention-based network performs well in non-local features. However, single block cannot always perform well due to the realistic images always with multiple kinds of features. In order to take full advantage of different blocks on different features. We have chosen three different blocks cooperating to extract different kinds of features. Addressing this problem, in this paper, we propose a new Local and non-local features-based feedback network for SR (LNFSR): (1) The traditional deep convolutional network block is used to extract the local non-feedbackable information directly and non-local non-feedbackable information (needs to cooperate with other blocks). (2) The dense skip-based feedback block is use to extract local feedbackable information. (3) The non-local self-attention block is used to extract non-local feedbackable information and the based LR feature information. We also introduced the feature up-fusion-delivery blocks to help the features be delivered to the right block at the end of each iteration. Experiments show our proposed LNFSR can extract different kinds of feature maps by different blocks and outperform other state-of-the-art algorithms

    Fault Diagnosis Method for an Underwater Thruster, Based on Load Feature Extraction

    No full text
    Targeting the problem of fault diagnosis in magnetic coupling underwater thrusters, a fault pattern classification method based on load feature extraction is proposed in this paper. By analyzing the output load characteristics of thrusters under typical fault patterns, the load torque model of the thrusters is established, and two characteristic parameters are constructed to describe the different fault patterns of thrusters. Then, a thruster load torque reconstruction method, based on the sliding mode observer (SMO), and the fault characteristic parameter identification method, based on the least square method (LSM), are proposed. According to the identified fault characteristic parameters, a thruster fault pattern classification method based on a support vector machine (SVM) is proposed. Finally, the feasibility and superiority of the proposed aspects are verified, through comparative simulation experiments. The results show that the diagnostic accuracy of this method is higher than 95% within 5 seconds of the thruster fault. The lowest diagnostic accuracy of thrusters with a single failure state is 96.75%, and the average diagnostic accuracy of thrusters with five fault states is 98.65%

    Fault Diagnosis Method for an Underwater Thruster, Based on Load Feature Extraction

    No full text
    Targeting the problem of fault diagnosis in magnetic coupling underwater thrusters, a fault pattern classification method based on load feature extraction is proposed in this paper. By analyzing the output load characteristics of thrusters under typical fault patterns, the load torque model of the thrusters is established, and two characteristic parameters are constructed to describe the different fault patterns of thrusters. Then, a thruster load torque reconstruction method, based on the sliding mode observer (SMO), and the fault characteristic parameter identification method, based on the least square method (LSM), are proposed. According to the identified fault characteristic parameters, a thruster fault pattern classification method based on a support vector machine (SVM) is proposed. Finally, the feasibility and superiority of the proposed aspects are verified, through comparative simulation experiments. The results show that the diagnostic accuracy of this method is higher than 95% within 5 seconds of the thruster fault. The lowest diagnostic accuracy of thrusters with a single failure state is 96.75%, and the average diagnostic accuracy of thrusters with five fault states is 98.65%

    A sphere region tracking control scheme for underwater vehicles

    No full text
    The concept of region tracking control has advantages for underwater vehicles for some special missions, such as pipeline tracking. This paper develops a sphere region tracking control scheme based on barrier Lyapunov functions, where an observer is used to estimate the effects of external disturbances and modeling uncertainty. It is shown that the distance between the vehicle's position and the corresponding point on the desired trajectory is always kept within the prescribed boundaries. Simultaneously, the absolute value of each attitude-tracking error is less than another defined boundary. Finally, the new control scheme is applied to a fully actuated underwater vehicle, and the advantages of this strategy are validated compared to other region-tracking control schemes

    A Heat-Map-Based Algorithm for Recognizing Group Activities in Videos

    No full text
    corecore